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Abstract

This paper operationalizes a non-empty relation as implied if strict
preference and indifference jointly do not completely order the choice
set. Specifically, indecision is operationalized as a positive preference for
delegating choice to a least predictable device.
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Notice to the Reader: This version of the paper differs in a number of
respects from the version published. Most of the differences are not of substance
but some merit special notice. In the published version:

1. Formulæ have a different numbering.

2. Relational symbols appear more often in the expression of formulæ.

3. Proposition (24) has been replaced by an equivalent proposition.

4. The union of binary paralysis with identity has been given a formal symbol
‘
π
—’, as in “X1

π
— X2”.
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1 Introduction
The foundations of theories of economic choice are often discussed in terms of
three relations: strict preference, indifference, and weak preference, the last of
which is the union of the first two.

� ⊆ {X1, X2, . . .}2

∼ ⊆ {X1, X2, . . .}2

< ≡ (� ∪ ∼)

It is usually proposed that these relations completely order the set of possible
options, so that an agent either strictly prefers any given option to any other
given option, or vice versa, or is indifferent between them.

[(X1 < X2) ∨ (X2 < X1)] ∀ (X1, X2)

If these relations do not completely order a set, that does not mean that some
pair of options has is no relation; rather, its relation is a sort of complement.

R = {X1, X2, . . .}2 \ {(X1, X2) � [(X1 < X2) ∨ (X2 < X1)]}

But there is some challenge in giving an interesting empirical content to the
supposition of such a relation.

Given an interpretation of indifference as equal valuation, a natural can-
didate for this complement would be some sort of indecision about relative
valuation, such that the individual was neither prepared to say that one choice
were better than another nor that they were equally good. But it is actually
not immediately clear how behavior under such indecision would differ from
that under indifference, except for utterance. For example, were an agent told
that she would be given X2 if she did not actively request X1, then she would
end up with the default if she were either indifferent or undecided. And, while
an undecided person may later come to the decision that one was indeed better
than another, a change of mind is also possible with indifference. It does not
seem much to matter to the economist whether the agent says “I don’t know” or
“I don’t care”.1 If such indecision does not produce choices different from those
of equal valuation, then one might as well interpret indifference as the union of
the two.

However, this paper will identify two relations distinct from strict prefer-
ence which correspond to meaningfully distinct choice behavior. One of these
relations will have some intuïtive correspondence to indecision about relative
valuation.

1Here, “I don’t know and I don’t care” is either absurd or elliptical.
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2 A Problem of Ordinary Interpretation, and an
Observable Distinction

When the question is asked of how an agent makes a choice between two things,
X1 and X2, between which she is indifferent, a stock reply is that she “flips a
coin”. There are at least two problematic aspects to this reply.

The first is that it quite fails to answer the question asked, but presumes
that every choice between X1 and X2 may be replaced with a choice amongst
X1, X2, and X3, where X3 is a lottery between X1 and X2. The ability to make
such replacements is rarely if ever explicit or implicit in the axiomatic structure.

The second problem is that, in structures meant to explain decision-making
under risk (as when the value of a lottery is an expectation of its utility), it is
typically an axiom or implication that if an agent is indifferent amongst all the
possible outcomes of a lottery, then the agent is indifferent between the lottery
and any one of those outcomes.2 An algorithm of replacement, however, must
have it that

X3 � X1

or an infinite sequence of lotteries will be introduced into the choice set, without
any choice resulting. We are thus compelled to abandon that algorithm, or to
revise our model of decision-making under risk, or both.

In actuality, one observes both:

• occasions where people appear to be indifferent amongst X1, X2, and
some non-trivial lottery in which X1 and X2 are the possible outcomes;

• occasions where people will “flip a coin” (often quite literally) to make a
choice.

One could wave away this distinction, asserting that one or the other of these
behaviors represents economic irrationality; but an indifference that mathe-
matically precluded a preference for “flipping a coin” has long been accepted as
rational (and we should resist the temptation to make the economist’s life easier
by ad hoc redefinition of “rationality”), while there would seem to be a meta-
preferential argument for permitting Buridan’s ass to be saved by the option of
a lottery.

In any event, we have enough on-hand to suggest two theoretical alterna-
tives to strict preference, each of which has different implications for observed
behavior.

3 Formal Structure

Preliminary
The conceptual foundations of a theory of choice are often expressed principally
in terms of preference relations. In this paper, however, foundations will be

2See expression (54) below.
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laid in terms of choice functions. The operationalization of the classic relations
and of any proposed additional relation is in the choices that result; and, while
choice functions are imperfectly observable, they are observable less indirectly
than are preferences.

However, this paper does not have the same sort of ambitions with which
revealed preference theory began,3 and the axiomata will be different.

General Axiomata
The first two axiomata are essentially definitional:

[C (B) ⊆ B] ∀B ; (1)

([B = ∅] ⇐ [C (B) = ∅])∀B . (2)

The first axiom requires that the choice function C () select a subset of the
budget (a feasible set or some subset thereof) B; the second that the only set
which is mapped to the empty set is itself the empty set.

The next four axiomata are rationality constraints:

[C (B1 ∪B2) = C [C (B1) ∪ C (B2)]] ∀ (B1, B2) . (3)

The choice set of the union of two budgets is the choice set of the union of each
of their choice sets. Amongst other things, this axiom says that choices may be
made in a pair-wise manner.

[([C (B1) ⊆ B2] ∧ [B2 ⊆ B1]) ⇒ [C (B2) = C (B1)]] ∀ (B1, B2) . (4)

If the choice set of a budget B1 is a subset of a subset B2, then the choice set
of B2 is that of B1.

[([C (B1) = B1] ∧ [B2 ⊆ B1]) ⇒ [C (B2) = B2]] ∀ (B1, B2) . (5)

If the choice set of a budget is all of that budget, then the choice set of any of
its sub-budgets is all of the sub-budget.4

3Samuelson, Paul Anthony; “A Note on the Pure Theory of Consumer’s Behavior”, Eco-
nomica v 51 #17 (1938).

4Hereïn, an overscoring of a proposition represents negation.
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

B1 ⊆ C (B1 ∪ B2 ∪ B3) ∀B3

∨
[B1 ⊆ C (B1 ∪ B2 ∪ B4)]

∨
B2 ⊆ C (B1 ∪ B2 ∪ B4)

 ∀B4


∀ (B1, B2) . (6)

Given that two budgets (B1 and B2) both appear as sub-budgets in two super-
budgets (B1 ∪ B2 ∪ B3 and B1 ∪ B2 ∪ B4), it cannot be the case that
exactly one of these sub-budgets is part of the choice set for one super-budget
(B1 ∪ B2 ∪ Bm), but the other sub-budget (with or without that one) is part
of the choice set for the other super-budget (B1 ∪ B2 ∪ Bn).5

Some Definitions
Paralysis exists for a budget B if

|C (B)| > 1 . (7)

Unless the budget has exactly two elements, this concept does not perfectly
correspond to

C (B) = B . (8)

which, in fact, is not observable except when B has fewer than three members.
(Observation of paralysis for each binary subset of B only implies (8) under some
assumptions, such as axiom (3).) Since paralysis is impossible for any singleton
budget; any relation of elements to which paralysis immediately corresponds
cannot be reflexive.

Strict Preference

(X1 � X2)
def
= {X2} ⊆ C ({X1, X2}) . (9)

Given the axiomata, this implies

([X1 � X2] ⇔ [({X1} ∪ B) ⊆ C ({X1, X2} ∪ B)] ∀B)∀ (X1, X2) , (10)
5This axiom is effectively a generalization to budgets of the Weak Axiom of Revealed

Preference; Eliaz and Ok instead relax the axiom in their model of indecision. (Eliaz, Krif,
and Efe A. Ok; “Indifference or indecisiveness? Choice-theoretic foundations of incomplete
preferences”, Games and Economic Behavior v 56 #1 (2006) 61–8.)
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and, more specifically,

([X1 � X2] ⇔ [{X1} = C ({X1, X2})])∀ (X1, X2) . (11)

Non-Rejection

(X1 ⊀ X2)
def
= [{X1} ⊆ C ({X1, X2})] . (12)

(In conventional models, weak preference, like non-rejection here, is the comple-
ment of the inverse of strict preference. One could define a relation equivalent
to binary paralysis, in union with identity, from

(X1 ⊀ X2) ∧ (X2 ⊀ X1)

much as indifference is often defined in terms of weak preference.)

Lotteries
The alternatives to strict preference will be defined in terms of lotteries. A
lottery will be represented as an unordered n-tuple, enclosed in angle-brackets,
of comma-separated dyads,6

〈(X1, p1) , (X2, p2) , . . . , (Xn, pn)〉,

where the first element of each dyad is a description of the world, and the second
element is a real number probability associated with that description.

I presume that the outcome of a lottery can itself be described independently
of the lottery, and in that context I’ll also assert the following three happy
equalities:7




〈(X, 1) , (Y1, 0) , (Y2, 0) , . . . , (Yn, 0)〉

=

X

 ∀ (Y1, Y2, . . . , Yn)

⇐
(n ∈ N1)


∀n∀X ; (13)

6Hereïn, a simple ordered pair may be distinguished from an open interval by immediate
context.

7Inclusions for logical quantifiers are hereïn written as explicit conjunctions or implications
within propositions.
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


〈(X, p1) , (X, p2) , (Y, q)〉

=

〈(X, p1 + p2) , (Y, q)〉


⇐[

(p1, p2, q) ∈ [0, 1]
3
]


∀ (p1, p2, q)∀Y ∀X ; (14)




〈(X, p) , (〈(Y1, q) , (Y2, 1− q)〉 , 1− p)〉

=

〈(X, p) , (Y1, q − p · q) , (Y2, 1− p− q + p · q)〉


⇐

[(p ∈ [0, 1]) ∧ (q ∈ [0, 1])]


∀(p, q)∀Y ∀X . (15)

(In some other framework, these equalities might be transformed into rationality
constraints.)

Three Further Relations
Equi-indifference obtains between any description and itself, and where there
is paralysis not only amongst the two principal descriptions, but also among
the two and some non-trivial lottery across the two. For observability, equi-
indifference will be defined thus

(X1 ≈ X2)
def
=

[C ({X1, X2}) = {X1, X2}]
∧




[X1 = X2]

∨
[|C ({X1, X2, 〈(X1, p) , (X2, 1− p)〉})| > 1]


∧


C ({Xn, 〈(X1, p) , (X2, 1− p)〉})

=

{Xn, 〈(X1, p) , (X2, 1− p)〉}


⇐

[Xn ∈ {X1, X2}]




∧

[p ∈ (0, 1)]



∃p



.

(16)
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But a much simpler expression, (51) below, can be derived by application of
axiomata (3) and (6).
The relation of equi-indifference will correspond to the attitude towards entropy
that obtains in the standard (S)EU models. (The quantifier for p will be made
universal in (54) as a result of applying axiom (23) below.) An equi-indifferent
agent will not choose to flip a coin.

Proto-Undecidedness obtains between any description and itself, and where
there is paralysis between two items but some non-trivial lottery over the two
items is strictly preferred to either.

(X1 ¡X2)
def
=



[C ({X1, X2}) = {X1, X2}]
∧


C ({X1, X2, 〈(X1, p) , (X2, 1− p)〉})

=

{〈(X1, p) , (X2, 1− p)〉}


∧

[p ∈ (0, 1)]


∃p


. (17)

Undecidedness obtains where there is paralysis between two items but some
non-trivial lottery over the two items is strictly preferred to either. Its difference
from proto-undecidedness is exactly in that undecidedness is irreflexive (cannot
exist between a thing and itself). Undecidedness can be defined in terms of
proto-undecidedness and identity,

¿ def
= (¡ \ =) , (18)

or directly in terms of choice functions,

(X1 ¿X2)
def
=



[C ({X1, X2}) = {X1, X2}]
∧



C ({X1, X2, 〈(X1, p) , (X2, 1− p)〉})
∩

{X1, X2}
=

∅


∧

[p ∈ (0, 1)]


∃p



. (19)
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(For definition (19) of “undecidedness”, it doesn’t really matter whether p is in
an open interval or in a closed interval, as the values of 0 and 1 are otherwise
ruled-out anyway.)

Given the different attitude towards entropy that is permitted here, it should
be no surprise that it is possible (in fact basically required for some cases) in
this model for a lottery to be preferred to either of its outcomes, despite one
being preferred to the other:



[C ({X1, X2}) = {X1}]
∧


C ({X1, X2, 〈(X1, p) , (X2, 1− p)〉}) ∩ {X1, X2}

=

∅


∧

[p ∈ (0, 1)]


∃p


∃ (X1, X2) .

(20)

This odd result must obtain in come cases where an outcome is in fact a further
lottery. It could be axiomatically excluded in cases where two outcomes of the
explicit lottery are not non-trivial lotteries over the same further outcomes,
differing only in their respective probabilities for those outcomes.

Further Starting Propositions
The relations of equi-indifference and of undecidedness are defined and distin-
guished in terms of lotteries, and the axiomata about choice functions presented
to this point ((1) through (6)) do not resolve significant questions because they
say nothing about lotteries per se.

For example, in the case of undecidedness there are questions of which lot-
teries are preferred (qua choices) to certainties, and of what relations obtain
within the set of preferred lotteries. Problems of real-world accuracy and preci-
sion come into play here; one probability cannot be distinguished from another
that were arbitrarily close. If the set of preferred lotteries were a singleton or
otherwise countable, then an agent could not be assured that any lottery actu-
ally on offer were truly preferred. And, likewise, in the real world, if there ever
were a certainty of any sort, it could not be distinguished from an arbitrarily-
close non-trivial lottery; so paralysis amongst all non-trivial lotteries must then
practically be equi-indifference between the trivial lotteries.

While a general theory of decision-making under risk would address these
questions and more, such completion will not be delivered here. Rather, only
a few propositions, sufficient to resolve more immediate concerns, will be pro-
duced. Within the context of a more general theory, some or all of these propo-
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sitions might be theoremata, but for purposes here they will be treated as ax-
iomata.

Symmetrical-Entropy Neutrality



[C ({X1, X2}) = {X1, X2}]
⇒


C

({
〈(X1, p) , (X2, 1− p)〉 ,
〈(X1, 1− p) , (X2, p)〉

})
={

〈(X1, p) , (X2, 1− p)〉 ,
〈(X1, 1− p) , (X2, p)〉

}


⇐

[p ∈ (0, 1)]


∀p



∀ (X1, X2) . (21)

In cases where X1 = X2, (21) would simply follow from lottery identities
(13) and (14). In other cases, it proposes that if there is paralysis between
two outcomes then there will also be paralysis between any two lotteries across
the outcomes such that the probabilities in one are simply an exchange of the
probabilities in the other.

Non-Rejectability of Certainty Implying Non-Rejectability of Probability



[{X1} ⊆ C ({X1, X2})]
⇒


{〈(X1, p) , (X2, 1 − p)〉}

⊆
C [{〈(X1, p) , (X2, 1 − p)〉 , X2}]


⇐

(p ∈ [0, 1])


∀p


∀ (X1, X2) . (22)

If an outcome X2 is not preferred to an outcome X1, then the certainty of X2

is not preferred to any lottery across the two outcomes.
Desirability of Certainty Implying Desirability of Probability
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




C [{X1, 〈(X1, q) , (X2, 1 − q)〉}]

=

{X1}


⇐

[q ∈ [0, 1)]


∀q

⇒


C [{〈(X1, r) , (X2, 1 − r)〉 , X2}]

=

{〈(X1, r) , (X2, 1 − r)〉}


⇐

(r ∈ (0, 1])


∀r



∀ (X1, X2) . (23)

If the certainty of some outcome X1 is strictly preferred to every lottery giving
some probability to a rival X2, then every lottery that gives some probability
to X1 is strictly preferable to the certainty of X2. (Note that this is a weaker
claim than one under which increasing probability is preferred.)

Negative Transitivity of Lottery Preference
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




C

[{
〈(X1, p) , (X2, 1− p)〉 ,
〈(X1, q) , (X2, 1− q)〉

}]
=

{〈(X1, p) , (X2, 1− p)〉}


∧[

(p, q) ∈ [0, 1]
2
]
∧ (q 6= p)


∃ (p, q)

⇒




C

[{
〈(X1, r) , (X3, 1− r)〉 ,
〈(X1, s) , (X3, 1− s)〉

}]
=

{〈(X1, r) , (X3, 1− r)〉}


∨

C

[{
〈(X2, r) , (X3, 1− r)〉 ,
〈(X2, s) , (X3, 1− s)〉

}]
=

〈(X2, r) , (X3, 1− r)〉




∧[

(r, s) ∈ [0, 1]
2
]
∧ (s 6= r)



∃ (r, s)



∀ (X1, X2, X3)

(24)

If there is some strictly preferred lottery across X1 and X2, then for any third
outcome X3 there will be a strictly preferred lottery across X1 and X3, or a
strictly preferred lottery across X2 and X3, or both.8 In the case of X1 being
strictly preferred to X2 or vice versa, this condition would be met so long as
paralysis did not obtain both between X1 and X3 and between X2 and X3, and
that’s already prohibitted. (See Ordering Theoremata (41) and (44) below.)
What is new in this proposition is the claim that when a non-trivial lottery is
strictly preferred over some lottery (trivial or otherwise) amongst lotteries over
X1 and X2, then some lottery (trivial or otherwise) will be strictly preferred
amongst lotteries over X1 and X3, or amongst lotteries over X2 and X3, or
both.

Desirability of Lotteries across Paralyzing Lotteries Given Proto-Undecidedness
between Underlying Outcomes

8Note that this is a negative transitivity of strict preference, not of weak preference.
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



[C ({X1, X2}) = {X1, X2}]
∧


C ({X1, 〈(X1, p) , (X2, 1− p)〉})

=

{〈(X1, p) , (X2, 1− p)〉}


∧

[p ∈ (0, 1)]


∃p


⇒




C

[{
〈(X1, q) , (X2, 1− q)〉 ,
〈(X1, r) , (X2, 1− r)〉

}]
={

〈(X1, q) , (X2, 1− q)〉 ,
〈(X1, r) , (X2, 1− r)〉

}


⇒


C

[{
〈(X1, q) , (X2, 1− q)〉 ,
〈(X1, s) , (X2, 1− s)〉

}]
=

{〈(X1, s) , (X2, 1− s)〉}


⇐

([s ∈ (q, r)] ∨ [s ∈ (r, q)])


∃s


⇐([

(q, r) ∈ [0, 1]
2
]
∧ [q 6= r]

)



∀ (q, r)



∀ (X1, X2) .

(25)

Again, in cases where X1 = X2, (25) holds trivially from the lottery identi-
ties (14) and (15). Otherwise, this proposition holds that, if paralysis obtains
between distinct outcomes X1 and X2, and some non-trivial lottery across the
two is preferred to X1, then, paralysis between any two lotteries across X1 and
X2 will imply proto-undecidedness between these two lotteries.

Theoremata9

Mutual Implication of the Null Set:
9Arithmetic as such plays a very limited rôle hereïn; these theoremata are mostly a working-

out of the logic of the prior formal propositions. Hence, the style of proof will perhaps be
more familiar to logicians than to most economists.
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([B = ∅] ⇔ [C (B) = ∅])∀B . (26)

Proof: From (1) and (2). �
Coupling Theorem:



[(B1 ∪ B2) ⊆ C (B1 ∪ B2 ∪ B3)] ∃B3

⇒
[B1 ⊆ C (B1 ∪ B2 ∪ B4)]

⇔
[B2 ⊆ C (B1 ∪ B2 ∪ B4)]

 ∀B4


∀ (B1, B2) . (27)

Proof: Apply the definition of implication and a Law of DeMorgan to (6),



[B1 ⊆ C (B1 ∪ B2 ∪ B3)] ∃B3

⇒
[B2 ⊆ C (B1 ∪ B2 ∪ B4)]

⇒
[B1 ⊆ C (B1 ∪ B2 ∪ B4)]

 ∀B4


∀ (B1, B2) . (28)

and note that

([(B1 ∪ B2) ⊆ B3] ⇔ [(B1 ⊆ B3) ∧ (B2 ⊆ B3)])∀ (B1, B2, B3) .� (29)

Exhaustion of possibilities by non-rejectability:


[X1 � X2] ∨ [X2 � X1]

∨
[C ({X1, X2}) = {X1, X2}]

 ∀ (X1, X2) . (30)

Proof: From (1),



[C ({X1, X2}) = {X1}]
∨

[C ({X1, X2}) = {X2}]
∨

[C ({X1, X2}) = {X1, X2}]


∀ (X1, X2) .� (31)
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Transitivity of Strict Preference:


[(X1 � X2) ∧ (X2 � X3)]

⇒
[X1 � X3]

 ∀ (X1, X2, X3) . (32)

Proof (by contradiction): From (3),

C ({X1, X2, X3}) = C [C ({X1}) ∪ C ({X2, X3})] = C ({X1, X2}) = {X1} .

But, from (6),




[{X3} ⊆ C ({X1, X3})]

∧
[{X1} ⊆ C ({X1, X2, X3})]


⇒

[{X3} ⊆ C ({X1, X2, X3})]


∀ (X1, X2, X3) . (33)

Acyclicity of Strict Preference:

[
(X1 � X2) ∧ (X2 � X3) ⇒ X3 � X1

]
∀ (X1, X2, X3) . (34)

Proof (by contradiction): From axiom (3),
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



[C ({X1, X2}) = {X1}]
∧

[C ({X2, X3}) = {X2}]
∧

[C ({X1, X3}) = {X3}]
∧

C [C ({X1}) ∪ C ({X2, X3})]
=

C [C ({X1, X3}) ∪ C ({X2})]

 ∀ (X1, X2, X3)

∧
C [C ({X1, X3}) ∪ C ({X2})]

=

C [C ({X1, X2}) ∪ C ({X3})]

 ∀ (X1, X2, X3)


⇒

[({X1} = {X2}) ∧ ({X2} = {X3})]



∀ (X1, X2, X3) . (35)

Symmetry of C ({Xi, Xj}) = {Xi, Xj}:


[C ({X1, X2}) = {X1, X2}]

⇒
[C ({X2, X1}) = {X2, X1}]

 ∀ (X1, X2) . (36)

Proof:

({X2, X1} ≡ {X1, X2}) ∀ (X1, X2) .� (37)

Transitivity of Binary Paralysis:




[C ({X1, X2}) = {X1, X2}]

∧
[C ({X2, X3}) = {X2, X3}]


⇒

[C ({X1, X3}) = {X1, X3}]


∀ (X1, X2, X3) . (38)
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Proof: Trivially true when X1 = X2 and when X2 = X3. Otherwise, from
(6),




[C ({X1, X2}) = {X1, X2}]

∧
[C ({X2, X3}) = {X2, X3}]


⇒

[C ({X1, X2, X3}) = {X1, X2, X3}]


∀ (X1, X2, X3) . (39)

And, from (1), (2), and (6),


[C ({X1, X2, X3}) = {X1, X2, X3}]

⇒
[C ({X1, X3}) = {X1, X3}]

∀ (X1, X2, X3) .� (40)

Ordering Theorem (41):


([C ({X1, X2}) = {X1, X2}] ∧ [X2 � X3])

⇒
(X1 � X3)

 ∀ (X1, X2, X2) . (41)

If X1 = X2 or if an agent is paralyzed between X1 and X2, and if the agent
strictly prefers X2 to X3, then she strictly prefers X1 to X3.

Proof (by contradiction): Trivially true when X1 = X2. Otherwise, from (3),


C [C ({X1}) ∪ C ({X2, X3})]

=

C [C ({X1, X3}) ∪ C ({X2})]

∀ (X1, X2, X3) . (42)

Hence


(X2 � X3)

⇒
(C ({X1} ∪ {X2}) = C [C ({X1, X3}) ∪ {X2}])

∀ (X1, X2, X2) . (43)
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Hence

[{X3} = C ({X1, X3})] ⇒ [C ({X1, X2}) = {X2}] .

Further, binary since paralysis is transitive (theorem (38)),

([C ({X1, X2}) = {X1, X2}] ∧ [C ({X1, X3}) = {X1, X3}])
⇒

[C ({X2, X3}) = {X2, X3}]
.�

Ordering Theorem (44):


([X1 � X2] ∧ [C ({X2, X3}) = {X2, X3}])

⇒
(X1 � X3)

∀ (X1, X2, X3) . (44)

If an agent strictly prefers X1 to X2 and is paralyzed between X2 and X3 or if
he strictly prefers X1 to X2 and X2 = X3, then she strictly prefers X1 to X3.

Proof (by contradiction): Trivially true when X2 = X3. Otherwise, from (3),


C [C ({X2}) ∪ C ({X1, X3})]

=

C [C ({X1, X2}) ∪ C ({X3})]

∀ (X1, X2, X3) . (45)

Hence


(X1 � X2)

⇒
(C ({X1} ∪ {X3}) = C [C ({X1, X3}) ∪ {X2}])

∀ (X1, X2, X2) . (46)

Hence

[{X3} = C ({X1, X3})] ⇒ [C ({X2, X3}) = {X3}] .

Further, since binary paralysis is transitive (theorem (38)),

([C ({X1, X3}) = {X1, X3}] ∧ [C ({X2, X3}) = {X2, X3}])
⇒

[C ({X1, X2}) = {X1, X2}]
.�

Ordering Theorem (47):
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



[(X1 � X2) ∧ (X2 ≈ X3)]

∨
[(X1 � X2) ∧ (X2 ¿ X3)]

∨
[(X1 ≈ X2) ∧ (X2 � X3)]

∨
[(X1 ¿ X2) ∧ (X2 � X3)]


⇒ (X1 � X3)


∀ (X1, X2, X3) . (47)

Proof: From (41) and (44). �
Reflexivity of equi-indifference:

(X1 ≈ X1) ∀ (X1) . (48)

Proof: By inspection. �
Symmetry of Equi-Indifference and of Undecidedness:


[(X1 ≈ X2) ⇔ (X2 ≈ X1)]

∧
[(X1 ¿ X2) ⇔ (X2 ¿ X1)]

 ∀ (X1, X2) . (49)

Proof: By inspection. �
Simplification of Equi-Indifference: From axiom (3),



(X1 ≈ X2)

⇔

[C ({X1, X2}) = {X1, X2}]
∧




C ({Xn, 〈(X1, p) , (X2, 1− p)〉})

=

{Xn, 〈(X1, p) , (X2, 1− p)〉}


⇐

[Xn ∈ {X1, X2}]


⇐

[p ∈ (0, 1)]


∃p





∀ (X1, X2) (50)
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and, from (28),



(X1 ≈ X2)

⇔


C ({X1, X2, 〈(X1, p) , (X2, 1− p)〉})

=

{X1, X2, 〈(X1, p) , (X2, 1− p)〉}


∧

(p ∈ [0, 1])


∃p


∀ (X1, X2) .� (51)

Paralysis Implying Non-rejection of a Non-Trivial Lottery:



(X1 = X2)

∨


C ({X1, X2, 〈(X1, p) , (X2, 1− p)〉})

6=
{X1, X2}


⇐

[p ∈ (0, 1)]


∀p


∀ (X1, X2) . (52)

Proof: From (22). �
Joint Exhaustion by Strict Preference, Equi-Indifference, and Undecided-

ness:

[(X1 � X2) ∨ (X1 ≈ X2) ∨ (X1 ¿ X2)]∀ (X1, X2) . (53)

Proof: The definitions themselves exhaust all possibilities not excluded by (53).
�

Universal Entropy-Neutrality of Equi-Indifference:



(X1 ≈ X2)

⇔


C [{X1, X2, 〈(X1, p) , (X2, 1− p)〉}]

=

{X1, X2, 〈(X1, p) , (X2, 1− p)〉}


⇐

{p ∈ [0, 1]}


∀p


∀ (X1, X2) . (54)
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Proof (by contradiction): If there is a set of lotteries across X1 and X2 that are
strictly preferred to each, then this set has a maximal subset of lotteries strictly
preferable to all other lotteries across these two outcomes.



〈(X1, p) , (X2, 1 − p)〉
�




{〈(X1, p) , (X2, 1 − p)〉}

⊆
C [{〈(X1, p) , (X2, 1 − p)〉 , 〈(X1, q) , (X2, 1 − q)〉}]


⇐

[q ∈ (0, 1)]


∀q

∧


{〈(X1, p) , (X2, 1 − p)〉}

=

C [{〈(X1, p) , (X2, 1 − p)〉 , 〈(X1, q) , (X2, 1 − q)〉}]


∧

[q ∈ (0, 1)]


∃q





. (55)

Under (15), every lottery other than any specific member of this maximal set is
a compound lottery across that strictly preferred lottery and either X1 or X2.
Under (23), the other non-trivial lotteries amongst these are all then strictly
preferred to X1 or to X2, as of course are the maximal lotteries.






{〈(X1, p) , (X2, 1 − p)〉}

=

C [{X1, 〈(X1, p) , (X2, 1 − p)〉}]


∨

{〈(X1, p) , (X2, 1 − p)〉}
=

C [{X2, 〈(X1, p) , (X2, 1 − p)〉}]




⇐

[p ∈ (0, 1)]



∀p , (56)

ruling out equi-indifference. �
Desirability of Non-Trivial Lotteries Given Proto-Undecidedness:
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



[C ({X1, X2}) = {X1, X2}]
∧


C ({X1, 〈(X1, p) , (X2, 1− p)〉})

=

{〈(X1, p) , (X2, 1− p)〉}


∧

[p ∈ (0, 1)]


∃p


⇒


C ({X1, 〈(X1, p) , (X2, 1− p)〉})

=

{〈(X1, p) , (X2, 1− p)〉}


∧

[p ∈ (0, 1)]


∀p



∀ (X1, X2) . (57)

When X1 6= X2, this proposition holds that, if paralysis obtains between
distinct outcomes X1 and X2, and some non-trivial lottery across the two is
preferred to X1, then all non-trivial lotteries are strictly preferred to X1. (Of
course, by symmetry, this would imply that they were strictly preferred also to
X2.)

Proof (by contradiction): From the lottery identities (14) and (15) when X1 =
X2 Otherwise, in the context of (53), when paralysis obtains between outcomes,
either it must obtain between each outcome and any non-trivial lottery across
the outcomes, or that non-trival lottery must be strictly preferred to either
outcome. From theorem (54), if there is any non-trivial lottery which is not
strictly preferred then no non-trivial lottery is strictly preferred, which would
contradict definition (17). �

Mutual Exclusivity of Equi-Indifference and Undecidedness:

(X1 ≈ X2) ∧ (X1 ¿ X2) ∀ (X1, X2) . (58)

Proof: Trivially from definition (18) or (19) and theorem (54). �
Transitivity of Equi-Indifference:

[([X1 ≈ X2] ∧ [X2 ≈ X3]) ⇒ (X1 ≈ X3)] ∀ (X1, X2, X3) . (59)

Proof: Apply DeMorgan’s Law and axiomata (1) and (2) to proposition (24).
�

Conjunction of Equi-Indifference with Undecidedness:
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[([X1 ≈ X2] ∧ [X2 ¿ X3]) ⇒ (X1 ¿ X3)] ∀ (X1, X2, X3) . (60)

Proof (by contradiction): Trivially true when X1 = X2. Otherwise, since
paralysis is symmetrical (theorem (36)) and transitive (theorem (38)),

C ({X1, X3}) = {X1, X3} . (61)

So, under (53),

(X1 ≈ X3) ∨ (X1 ¿ X3) . (62)

But, under symmetry and transitivity of equi-indifference (theoremata (49) and
(59)), (X1 ≈ X3) would contradict (X1 ¿ X2). �

Intransitivity of Undecidedness:

([(X1 ¿ X2) ∧ (X2 ¿ X3)] ⇒ [X1 ¿ X3]) ∀ (X1, X2, X3) . (63)

Proof (by counterexample): Consider the case X1 = X3. Undecidedness is
irreflexive by definition. �

Desirability of Entropy under Proto-Undecidedness:





[C ({X1, X2}) = {X1, X2}]
∧


C ({X1, X2, 〈(X1, q) , (X2, 1− q)〉})

=

{〈(X1, q) , (X2, 1− q)〉}


∧

[q ∈ (0, 1)]


∃q


⇒




C

[{
〈(X1, p) , (X2, 1− p)〉 ,
〈(X1, r) , (X2, 1− r)〉

}]
=

〈(X1, r) , (X2, 1− r)〉


∧

([r ∈ (p, 1− p)] ∨ [r ∈ (1− p, p)])


∃r

⇐
(p ∈ [0, 1])


∀p



∀ (X1, X2)

(64)
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In cases where X1 6= X2, (64) proposes that if there is undecidedness between
two outcomes then one lottery between the two will be strictly preferred to
another if the probabilities assigned to each in the former are closer together
than those in the latter.

Proof: In cases whereX1 = X2, (64) would simply follow from lottery identities
(13) and (14). Beyond that, it is little more than a consolidation of (57) and
(25) in the context of (21).10 �

Optimality, under Undecidedness, of a “Fair Coin”:



(X1 ¿ X2)

⇒

(
[|p− .5| < |q − .5|] ∧

[
(p, q) ∈ [0, 1]

2
])

⇒
〈(X1, p) , (X2, 1− p)〉

�
〈(X1, q) , (X2, 1− q)〉




∀ (p, q)


∀ (X1, X2) . (65)

Proof: This proposition follows from (64). �

Summary
This model has what can be seen as three basic relations, strict preference,
equi-indifference, and undecidedness.

Strict preference is essentially the familiar relation of standard choice the-
ory. It interacts both with equi-indifference and with undecidedness much as
strict preference does with indifference in that standard model. (See especially
theorem (47).)

Equi-indifference, like indifference in the standard model, is an equivalence
relation. If two outcomes are in a given equivalence set, then so are all lotteries
across those outcomes, much as an expected utility model would place them.

10Proposition (25) and theorem (64) will perhaps seem more plausible if it is noted that, in
the context of (21) and of the lottery identity (15), (64) is marginally equivalent to

(X1 ¡X2)

⇒
[
〈(X1, p) , (X2, 1 − p)〉 ¡ 〈(X1, 1 − p) , (X2p)〉

]
⇐

(p ∈ [0, 1])

∀p


∀ (X1, X2) .

The gist of which is that if an agent is proto-undecided between two choices, then she is proto-
undecided between the choice of a 30-70 lottery across the two and a 70-30 lottery, of a 40-60
lottery and a 60-40 lottery, &c. (A 50-50 lottery, however, is its own such complement, and
the cardinality of the set of a 50-50 lottery with itself is just 1.)
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But equi-indifference and strict preference do not jointly provide a complete
ordering of the outcomes.

Undecidedness obtains amongst all remaining outcomes. Undecidedness is
symmetric, but irreflexive and intransitive. When undecidedness obtains be-
tween two outcomes, then the agent will choose any non-trivial lottery across
the two before simply selecting either, and strictly prefers lotteries with less
bias, so that a “fair coin” is seen as the best means of selecting an outcome.

4 Discussion

Significance of the Model
The model functions as a sort of proof of concept for an operationalization
of preferences as an incomplete preördering (by the union of strict preference
with equi-indifference). Differences, beyond utterance, are observable between
paralysis which is ended by inclusion of an option of a “coin flip” and that which
is not. Plausible propositions imply intuïtively appealing properties to relations
defined in terms of these observable behaviors, as well as other properties which
are themselves at least plausible.

Theorists and teachers have tended to treat decision-making under certainty
as self-contained, if none-the-less a special case. This model may dissolve that
containment, as the two alternatives to strict preference are distinguished by
reference to choices whose outcomes are uncertain. However, the union of those
two alternatives (which is also a union of binary paralysis and identity) exhibits
the classical properties of indifference so long as certainty obtains.

The principal significance for theory, then, should be sought in what the
distinction would require of the more general theory of decision-making, where
certainty is not presumed.

Alternatives Conceptions of a ‘Third’ Relation
Desire for Delay

An alternate conception of a ‘third’ relation, neither preference nor indifference,
associates it with a desire to delay decision-making. That notion and the notion
of this paper are special cases of a more general association with a desire to defer
in some way the decision-making process, in one case to the agent’s future self,
in the other case to a present exogenous process. Desire for delay has itself been
found empirically.11

There is at least some challenge in operationalizing a relevant behavioral
distinction between this delaying sort of indecision and traditional indifference.
If an individual cannot decide at one time, but reaches a decision later, this
might be because she had not made up her mind, or because she had changed
her mind. In some case of this indecision, she might be willing to pay a premium

11Danan, Eric, and Ziegelmeyer, Anthony; “Are Preferences Complete? An Experimental
Measurement of Indecisiveness under Risk”, working paper (2006).
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to secure a delay (something that she would not do if she were sure than neither
alternative were better than the other);12 but, in other cases, proposed premia
might simply exceed her sense of the potential significance of the distinction
between the outcomes.13

These two notions of additional relations (one entailing strict preference for
a lottery, the other strict preference for a delay) are non-rival in the sense that it
is conceivable that some individuals might choose a lottery but not delay, some
might choose delay but not a lottery, and some might prefer both to either of
the ultimate outcomes.

Intransitivity

Some authors associate indecision with intransitivity. The intuïtion is straight-
forward; if an agent has no strict preference between some x and some y, and
likewise has no strict preference between y and some z, yet has some clear
preference between x and z, then it cannot be that there is indifference between
x and y and between y and z; rather, it must be that the agent is undecided
where to place y in an ordering including x and z. The behavioral argument
against this sort of intransitivity is that such preferences exhibit a cyclicity,
under which the agent can fall victim to a money pump. For example, say that
z is strictly preferred to x; in that case, the agent will pay a premium to go from
x to z, yet apparently would then go from z to y without charge, and likewise
from y to x, whereüpon the agent could once again be induced to pay a fee to
go from x to z.

Eliaz and Ok provide an attempt to operationalize incompleteness in terms
of intransitivity, and to vindicate its rationality.14

Towards vindication, they provide two illustrative examples. Unfortunately,
each of these involve some individual (in one case a mother of two children, in
the other case an agent awarding fellowships) attempting to conform to external
preferences which are cyclic. In some case, perhaps in a great many cases, the
sane chose to humor the insane; they even bend to the will of the lunatic; but
the choice made in yielding to regulation by another is not, properly, the same
choice as that made by the regulator. I acknowledge that it is desirable to
model behavior characterized by cyclicity of preferences, but I would not be
comfortable with a model that could not find indecision except where one can
find this sort of irrationality lurking in the background if not in the foreground.

Eliaz and Ok subsequently provide formal definition of an indecision relation

./
def
=
[
X2 \

(
% ∪ %−1

)]
12Of course, one should distinguish between cases in which a decision may be effected at

any time within the additional allotment, and those in which the agent is forced to wait until
the end of that allotment.

13While “flipping a coin” is not perfectly costless either, the marginal cost of declaring a
choice that a coin be flipped can be made essentially identical to that of declaring a choice of
one of the principal outcomes.

14Eliaz, Kfir, and Ok, Efe A.; “Indifference or indecisiveness? Choice-theoretic foundations
of incomplete preferences”, Games and Economic Behavior v 56 #1 (2006) 61–86.
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(where “X” represents the set of objects of choice), where the relation % ratio-
nalizes a choice function c ( ), implying that

(x ∼ y) ⇒ [{x, y} = c ({x, y})]

where
∼ def

=
(
% ∩ %−1

)
.

They then partially operationalize ./ thus

(x ./ y) ⇐



(x = y ∧ [{x, y} = c ({x, y})])
∧

(
x ∈ S ∧ y ∈ S

)
∧

[x ∈ c (S ∪ {x})]⇔ [y ∈ c (S ∪ {y})]
∨

c (S ∪ {x}) \ {x} = c (S ∪ {y}) \ {y}


∧

(|S| ∈ N1)


∃S



.

The esential idea is exactly that apparent cases of

z ∼ x ∼ y � z

and of
z � x ∼ y ∼ z

are actually cases of
x ./ y .

However, there is then a remarkable difficulty here in identifying specific in-
stances of indifference; apparent indifference may be an artefact of not having
tested against an S that would expose indecision. A distinction between indif-
ference and indecision is not really observable, because indifference as such is
not really observable.

A very similar operationalization was explored by Mandler. Classically, in-
difference is an equivalence relation, and Mandler proposes to distinguish it
from indecision empirically as such.

In an earlier paper,15 Mandler distinguished revealed preferences from un-
derlying, psychological preferences (as had some previous authors), and argued
that the standard argument for completeness applied to the former and not to
the latter, while much of the standard argument for transitivity applied to the

15Mandler, Michael; “Incomplete preferences and rational intransitivity of choice”, Games
and Economic Behavior v 50 #2 (2005) 255–77.
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latter and not to the former. Cyclicity may then be a feature of revealed pref-
erences, but Mandler proposed that they were not an adequate description of
behavior (in which case I would say that they were ill-named), and he submitted
that an extended choice function, allowing for history-dependent choices, could
block any money pump. (Cf Kyburg’s response to Dutch book arguments in
probability theory.16) In my opinion, this is a more satisfying defense of the
possible rationality of intransitivity than is found in the examples from Eliaz
and Ok.

In a more recent paper,17 Mandler defines

(x ∼ ∗ y) def
= (x � y ∧ y � x)

the union of which with � would of course represent a complete ordering. But
if intransitivity holds, then there are two subcases of ∼ ∗,

(x ∼B y)
def
= ([(x ∼ ∗ z) ⇔ (y ∼ ∗ z)]∀z)

which is an equivalence relation, and its complement

⊥B
def
= (∼ ∗\ ∼B)

which is not.

(x ⊥B y) ≡
[
(x ∼ ∗ y) ∧ (x ∼ ∗ z) ⇔ (y ∼ ∗ z)∃z

]
.

To be explicit: One finds such a z in a case where

z ∼ ∗x ∼ ∗ y � z

or where
z � x ∼ ∗ y ∼ ∗ z .

The order in which these relations are defined tends to obscure essentially
the same difficulty in identifying indifference as is found in the aforementioned
work by Eliaz and Ok.

Attitudes towards Entropy versus Attitudes towards Risk
If proposition (22) does not obtain in the case where there is paralysis between
the underlying outcomes, this rejection of entropy represents a sort of aversion
to gambling not captured by diminishing marginal utility (‘risk aversion’). On
the other hand, if some non-trivial lottery is always strictly preferred to any
two less-entropic choices (so that, for example, equi-indifference never held in

16Kyburg, Henry Ely jr; “Subjective Probability: Criticisms, Reflections and Problems”,
Journal of Philosophical Logic v 7 #1 (1978) 157–80.

17Mandler, Michael; “Indifference and incompleteness distinguished by rational trade”,
Games and Economic Behavior v 67 #1 (2009) 300–14.
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the case of paralysis), then this pattern would represent a sort of attraction to
gambling not captured by the standard notion of being risk loving.

The hypothetical case of an agent who is sometimes classically indifferent
and sometimes prefers either certain outcome to any non-trivially lottery might
be dismissed as unreasonable behavior, or it might be that some more robust
framework will make such behavior seem sensible.

5 Areas for Possible Future Work
I have presumed that the outcome of a lottery can be described without reference
to the lottery, but some might prefer an alternative conceptualization in which
a state of the world intrinsically includes the means by which it was effected, so
that one who chooses to “flip a coin” has chosen a different ultimate outcome.
The model hereïn could accommodate that conceptualization largely by no more
than a reïnterpretation of notation, but the lottery equalities (13), (14), and (15)
would have to be replaced with paralysis claims, and the mathematics would
become more awkward. Results should be fundamentally unchanged.

As noted, the additional proposition (21) through (25) function hereïn as
axiomata, but it would ultimately be better to derive some or all of them from
more primitive assertions. Proposition (25) looks especially like a rabbit pulled
from a hat.

Further, though the distinction between equi-indifference and undecidedness
involves decision-making under risk, nothing resembling a more general theory
of such decision-making has been presented here.

There is opportunity, then, perhaps to place these propositions on a bet-
ter footing, or to replace them altogether with a rival set of propositions still
compatible with the earlier axiomata and lottery equalities.

The model in this paper has presumed something like the ordinary notion of
probability as a measure of some sort. At this time, conceptions of probability
as quantified are so widely and firmly embraced as to be taken for the basic
concept. But various authors, such as Keynes,18 have argued that the plausi-
bility associated with a given outcome may not be subject to quantification or
even a complete ordering; in other words, that the relative plausibility of two
outcomes may be undecided.

Of course, if subjective orderings of outcomes by plausibility are not com-
plete, the incomparability becomes a source of undecidedness amongst prefer-
ences across the options associated with those outcomes. I believe that it would
probably be trivializing to conceptualize all cases of undecidedness as obtain-
ing from indecision about the plausibilities of outcomes, but that it would be
appropriate to recognize many or most real-world cases as founded in such in-
comparability of uncertainties.19

18Keynes, John Maynard; A Treatise on Probability, especially Pt I Ch III.
19Remarks to me by Anthony C. Gamst, of UCSD, emphasized the importance of these

points.
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A decision theory which dispensed with the assumption that outcomes could
be completely ordered by plausibility, as well as with the assumption that they
could be completely ordered by desirability, could more accurately model the
decision-making process of real-world economic agents. The creätion of such a
model seems challenging, and may entail an enormous loss of tractability, but
could be used to identify where-and-why more conventional models should be
expected to fail.

6 Conclusion
A bit more than fifty years ago, Savage wrote

There is some temptation to explore the possibilities of analyzing
preferences among acts as a partial ordering, that is, in effect, to
replace part 1 of the definition of a simple ordering by the very weak
proposition f ≤ f, admitting that some pairs of acts are incompara-
ble. This would seem to give expression to introspective sensations
of indecision or vacillation, which we may be reluctant to identify
with indifference. My own conjecture is that it would prove to be
a blind alley losing much power and advancing little, if at all, in
realism; but only an enthusiastic exploration could shed real light
on the question.20

(It is characteristic that Savage would acknowledge his conjecture as such, and
encourage its testing.)

There is some advancement in reälism in distinguishing between cases where
paralysis is resolved by adding the option of a lottery and those in which it
is not. Until the implications for general theories of decision-making are more
fully explored, it will not be clear to what extent the results of descriptive theory
would be affected.

The implications for prescriptive economics seem more apparent. Preferences
that are not completely ordered are preferences to which no quantification can
be fitted at all, let alone uniquely. It may often be possible to fit intervals or
more complex structures with elements to which some sort of arithmetic may be
applied (work by Dubra, Maccheroni, Eliaz, and Ok has explored such ideas21
22), but the case for these being anything more than proxies for orderings will
be even weaker than that for point-values. To the extent that prescriptive
theories rely upon overt or covert assumptions of interpersonally comparable
utility, those theories are cast even further into doubt.

20Savage, Leonard Jimmie; The Foundations of Statististics (1st and 2nd editions) §2.6,
final paragraph. (What Savage then called a “partial ordering” would now more typically be
called an “incomplete preordering”. Savage of course uses “≤” for a relation that corresponds
to a union of strict preference with indifference.)

21Dubra, Juan, Maccheroni, Fabio, and Ok, Efe A.; “Expected Utility without the Com-
pleteness Axiom”, Journal of Economic Theory #115 (2004) 118–33.

22Eliaz, Kfir, and Ok, Efe A.; “Indifference or indecisiveness? Choice-theoretic foundations
of incomplete preferences”, Games and Economic Behavior v 56 #1 (2006) 61–86.
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