A Guide for the Potentially Perplexed

Ambiguity

The notation

$$
(a, b)
$$

sometimes refers to the dyad (ordered pair) of a and b, and sometimes to the open interval of real numbers between (but not including) a and b. In this paper, an \in sign will reveal that an open interval is meant, as in

$$
p \in(0,1)
$$

Set notation

\varnothing empty set
\in element

$$
x_{5} \in\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}
$$

\cup union
\cap intersection
\supset proper superset
$\supseteq \quad$ improper superset ("superset-or-equal")
\subset proper subset
\subseteq improper subset ("subset-or-equal")
\ complementation ("removing any element also found in")

$$
(\{a, b, c, d\} \backslash\{c, d, e, f\})=\{a, b\}
$$

|| cardinality

$$
\left|\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}\right|=m
$$

| "such that"

$$
\{a \mid(a \cdot b=a)\}=\{0\}
$$

Set of (really) natural numbers

$$
\mathbb{N}_{1}=\{1,2, \ldots\}
$$

An interval is a set of real numbers.
open interval: every real number between a and b

$$
(a, b)
$$

every real number greater than a, up to and including b

$$
(a, b]
$$

every real number from a up to b

$$
[a, b)
$$

closed interval: every real number from a through b

$$
[a, b]
$$

The Cartesian product

$$
\begin{gathered}
\left\{X_{1}, X_{2}, \ldots, X_{m}\right\} \times\left\{Y_{1}, Y_{2}, \ldots, Y_{m}\right\}=\left\{\left(X_{1}, Y_{1}\right),\left(X_{1}, Y_{2}\right), \ldots,\left(X_{1}, Y_{n}\right),\left(X_{2}, Y_{1}\right), \ldots,\left(X_{m}, Y_{n}\right)\right\} \\
\left\{X_{1}, X_{2}, \ldots\right\}^{2}=\left\{\left(X_{1}, X_{1}\right),\left(X_{1}, X_{2}\right), \ldots\right\}
\end{gathered}
$$

(This can be generalized to

$$
\begin{gathered}
S_{1} \times S_{2} \times \ldots \\
S^{n}
\end{gathered}
$$

by having sets of n-tuples whose i-th elements are from the i th set.)
The Cartesian set of two intervals

$$
\begin{aligned}
& (a, b) \times(c, d) \\
& \quad(a, b]^{2} \\
& \text { (and so forth) }
\end{aligned}
$$

is a set of pairs of numbers (which may be conceptualized as points, but this conceptualization doesn't help for my paper).

A mathematical relation[ship] may be conceptualized as a subset of a Cartesian product. For example, for the set of positive integers, the relation $=$ is

$$
\{(1,1),(2,2), \ldots\}
$$

Thinking of relations in this way, turning them into sets, allows us to apply set operations to them. For example,

$$
\geq=(>\cup=)
$$

Symbolic Logic Notation

\wedge conjunction ("and")
\checkmark inclusive disjunction ("and/or")
I indicate negation ("not") with an overscore

$$
\bar{P}
$$

implication
\Rightarrow material implication ("only if")
\Leftarrow "if only"
$\Leftrightarrow \quad$ "if and only if"
\exists existential quantifier ("for some")
$\forall \quad$ universal quantifier ("for all")

Some Jargon

"EU" stands for "expected utility", and "SEU" for "subjective expected utility". An expected utility model says that an individual will choose a course of actions whose mathematical expectation of utility

$$
E(u)=\sum\left[p_{i} \cdot u\left(X_{i}\right)\right]
$$

is highest. A subjective expected utility model is one in which the associated probabilities are measures of belief, rather than, say, objective frequencies.

